
Crawling for Data Breach Reports
Design Document

Team SDDEC19-01

Client: Benjamin Blakely (Argonne National Laboratory)
Advisor: Thomas Daniels

Team Members:
Alec Lones, Jeremiah Brusegaard,

Mark Schwartz, Nolan Kim

Email: sddec19-01@iastate.edu
Website: http://sddec19-01.sd.ece.iastate.edu/

http://sddec19-01.sd.ece.iastate.edu/

1: Frontal Materials

1.1: Table of Contents

1: Frontal Materials 2
1.1: Table of Contents 2
1.2: List of Figures 3
1.3: List of Definitions 3

2: Introductory Materials 3
2.1: Acknowledgement 3
2.2: Problem and Project Statement 3
2.3: Operating Environment 4
2.4: Intended Users and Uses 4
2.5: Assumptions and Limitations 4

2.5.1: Assumptions 4
2.5.2: Limitations 4

2.6: Expected End Product and Deliverables 5
2.6.1: Core scraper 5
2.6.2: Natural Language Processing Module 5
2.6.3: Machine Learning Module 5
2.6.4: Python Front-End 5
2.6.5: Breach Report Database 5
2.6.6: Documentation 5

3: Specifications and Analysis 5
3.1: Proposed Design 5
3.2: Design Analysis 6

4: Testing and Implementation 7
4.1: Interface Specifications 7
4.2: Hardware and Software 8
4.3: Functional Testing 8
4.4: Non-Functional Testing 8
4.5: Process 8
4.6: Results 8

5: Closing Material 9
5.1: Conclusion 9

2

5.2: References 9

1.2: List of Figures

Figure 1: High Level Block Diagram 7

1.3: List of Definitions
ML: Machine learning
CSO: Chief Security Officer
DNS: Domain Name System
UI: User Interface

2: Introductory Materials

2.1: Acknowledgement
We would like to acknowledge Benjamin Blakely of Argonne National Laboratory for his
technical advice and for sponsoring this project.

2.2: Problem and Project Statement
Currently, there is no good way to be notified about every data breach that occurs, so important
data breaches can easily fly under the radar. This can be dangerous for a company’s security
team, who needs to stay up to date with the latest data breaches in order to make sure their
company is secure. In addition, it is important for these data breaches to be enumerated for
security teams to reference later.

The purpose of this project is to serve as an early warning for CSO’s on data breach reports that
may affect their company. We plan to do this by implementing a web scraper to traverse the
internet and identify data breach reports using ML. Our scraper will then store the breach
reports in a database for future reference. With this information, the CSO will remain informed
on current security threats to their organization.

3

2.3: Operating Environment
At its core, our scraper is a Python program, and can run on any machine with Python 3 and an
internet connection. The machine must also be able to run a MongoDB database, which the
scraper will use to store breach reports. This environment will require that we have constant
uptime or at least near constant uptime to allow for uninterrupted web crawling and training for
the ML algorithm. When the final product is finished, we will need an analyst to be on standby to
train the model while its crawling after we do the initial training.

2.4: Intended Users and Uses
The first user we will discuss will be the CSO who generally will be very busy with day to day
tasks and doesn’t have time to spend sifting through data. With our tool, they will be able to see
new breach reports and learn about potential security breaches that could have an effect on
their company, and react accordingly. The purpose of this tool is to gather information, so the
CSO would need to act on the information given to them.

The second user is an Analyst who will train our ML model. When the ML model makes a
decision on whether or not a page is a breach report, the analyst can tell it whether it was right
or not. Effectively, the analyst will have a supervisor role to the crawling model. The analyst will
eventually not be a necessary user once the model is fully trained as it will be able to accurately
classify data breach reports and directly share the findings with the CSO.

2.5: Assumptions and Limitations

2.5.1: Assumptions
● Internet connection will not be interrupted
● Power will not be interrupted
● Will not get blacklisted from too many DNS requests (We will attempt to limit requests to

avoid this)
● Analyst training model will be fully competent in what a breach report is or is not
● There won’t be resource limitations for crawling - hardware, etc.

2.5.2: Limitations
● Dark web is off limits
● Budget is $0
● Breach reports are limited to english
● One year to be created with taking into account we have other classes
● Reduced crawling speed to avoid getting blacklisted

4

2.6: Expected End Product and Deliverables

2.6.1: Core scraper
This deliverable is a Python scraper that crawls the internet and uses ML to identify breach
reports. This deliverable will also have an interface for an analyst to train the ML model, as well
as an interface for a CSO to view and sort the found data breaches.

2.6.2: Natural Language Processing Module
This deliverable trims down and processes the raw text from the scraper module. This
processed text will then be fed into the ML code.

2.6.3: ML Module
This deliverable contains all the ML code and feature detection code. This module determines
what constitutes a data breach and what does not.

2.6.4: Python Front-End
This deliverable will allows the two main users of the system to access it. The CSO will be
given a data breach report interface while the analyst will be given tools to train the ML module.

2.6.5: Breach Report Database
This deliverable is a MongoDB database that the scraper will use to store breach reports. The
database is solely for the crawler’s backend functionality, and will not be accessed directly by
the users.

2.6.6: Documentation
For this deliverable there needs to be adequate documentation on our project. Python is a
loosely defined language so documentation will be much more important.

3: Specifications and Analysis

3.1: Proposed Design
So far we have done some prototyping with scrapy for doing web scraping. It seems to be the
most widely used and accessible scraper for Python, and it has the most compatibility with our

5

other libraries. So so far each of us have implemented some sort of prototype with scrapy.
Others have added on to those prototypes to have other features we might use. Currently the
farthest along prototype we have scrapes the given website as long as that website is not part of
the blocked domains. It then parses that website and tokenizes the words of it. Then the words
get lemmatized so that we can vectorize the webpage to be used by our ML algorithm. Currently
we are in the process of prototyping a vectorizer that can take the processed website and turn it
into statistical data. We have not prototyped a ML model yet, but are exploring different
libraries.

Functional Requirements:

● Web scraper starts from a list of known breach reports to start crawling
● The web scraper can crawl new links from the seed urls
● Web scraper parses website into a list of words
● Parsed list of words gets processed (lemmatized)
● Processed words are fed into ML algorithm (via vectorization)
● ML can evaluate a webpage and get feedback from supervisor
● Breach reports are stored in a database as a link to the website they came from
● Eventually after enough training the model should not need supervisor
● Front end UI should display new breach report

Non-Functional Requirements:
● For the security of the school we will not crawl the dark web for breach reports
● Can be run on any machine with Python3 and a network connection
● Can run without interruptions to crawl multiple websites without crashing

Our project is relevant to a few standards. First we are using the PEP8 Style Guide Standard to
promote readability and consistency.1 Additionally we are using IEEE 829 and 1008 to format
testing documents and unit testing.23 These three standards will help us to write readable and
consistent code, documents, and tests so that our project can be built upon by others if need be.

3.2: Design Analysis
So far, we have implemented a prototype Scrapy crawler that pipes output into a lemmatization
agent. It starts crawling from www.grahamcluley.com/quora-hacked, and excludes a list of
blacklisted URLs. It then uses the BeautifulSoup library to extract data from the scraped pages.
The data is then passed into a lemmatizer, and words with strange characters are removed.

The client has analyzed our prototype and given it his approval, which shows that our design
most likely doesn’t have any problems that would invalidate it. However, we do have a few
concerns about the specific functions of each of our implemented modules. First of all, when our
scraper encounters a Twitter link, it wastes time scraping useless links on Twitter. This is
probably true for other social media sites like Facebook or Reddit. In order to overcome this
issue, we plan to have the scraper follow Twitter links when they’re linked from other websites,

6

http://www.grahamcluley.com/quora-hacked

but not from Twitter itself. In addition, we’re not sure which characters should be blacklisted from
our lemmatizer, as some technical words that would be useful to our ML agent may include
numbers and special characters. On the other hand, we don’t want to bog down our lemmatizer
with useless information such as non-technical websites and blogs.

Our design, figure 1, is fairly straightforward, as the dataflow is just a straight line from the
scraper to the database, save for the training module. It also has high cohesion and low
coupling, as we have clear, defined modules that handle each part of the scraping or ML
process. This design makes implementation easy, as we can focus on one module at a time
before linking them together. It will also make testing easier, as we can test the modules
individually and treat adjacent modules as black boxes.

Figure 1: High Level Block Diagram

4: Testing and Implementation

4.1: Interface Specifications
The scraper, lemmatizer, stemmer, and vectorizer all stem from different libraries. Thus in order
to connect them together, we will be writing the interfacing code. We plan to have separate
modules so that the program could be either run on a single machine or distributed among
multiple machines. PyUnit tests will test the interfacing between these different modules to
verify correctness.

7

4.2: Hardware and Software
PyUnit - PyUnit is a Python equivalent of JUnit. It will be used to test different modules in order
to verify correctness and interoperability. This will handle our unit, integration, and system tests.

Test Data - After the ML model has been fitted using the training data, a set-aside portion of
Test Data will be fed to the model to determine accuracy. The Test Data will be helpful in
determining the presence of overfitting our model to our data and correcting it if it exists.
Additionally this data will be used to help tweak the model to balance accuracy, fit, and bias.

4.3: Functional Testing
PyUnit unit tests will be used to test the core functionality of the scraper, lemmatizer, and
vectorizer. There will also be integration tests to verify the interoperability of the different
modules. System tests will be written to make sure that the system works as a whole. Each of
these three levels of tests will be run throughout development to ensure that adding new code
doesn’t break old code. To break down each component we will first test the scraper by
monitoring that it is scraping all the pages we give it and not traversing sites that are blacklisted.
For the lemmatizer this will consist of making sure that the lemmatized words don’t consist of
unreal words such as just an “s” with an apostrophe. For the vectorizer making sure that it is
correctly adding features that we give it to the text.

4.4: Non-Functional Testing
We will test our code on both Windows and Linux in order to test for compatibility issues
between operating systems. The code will also be tested to ensure that performance doesn’t
suffer when the scraper hits links that take it to Twitter or other link heavy pages. A
performance test will also be implemented for the ML model to ensure that predictions and
model generation is completed in a satisfactory time.

4.5: Process
First we will test the scraper, lemmatizer, stemmer, and vectorizer modules with PyUnit tests.
After these modules have passed, we will test our ML model on a set of known and unknown
data breach reports. We will change the model based on its ability or inability to recognize each
as what category it belongs to. Finally we will test the overall system to make sure that it
functions correctly and efficiently as a whole.

8

4.6: Results
As of the writing of this document, only prototypes have been created with no official testing
performed yet. The only testing performed is verifying that different libraries work with each
other and evaluating what interfacing code will need to be written.

5: Closing Material

5.1: Conclusion
Currently we have multiple prototypes for scraping websites and lemmatizing data. We aim to
connect the scraper, lemmatizer, vectorizer, ML model, database, and front end through a
series of interfaces similar to a pipeline. As much of the pipeline will be multithreaded as
possible in order to maximize speed and efficiency. This solution is the most efficient solution
that we have tested. Scrapy and the other libraries used are reputable and widely used along
with being efficient. Additionally the code connecting these libraries will be multithreaded and
aim to efficiently transfer data through the pipeline. With these goals in mind, this solution
surpasses all others in efficiency and code elegance.

5.2: References
1. “PEP 8 -- Style Guide for Python Code.” Python.org,

www.python.org/dev/peps/pep-0008/#introduction.
2. “829-1998 - IEEE Standard for Software Test Documentation.” IEEE,

www.standards.ieee.org/standard/829-1998.html
3. “1008-1987 - IEEE Standard for Software Unit Testing.” IEEE,

www.standards.ieee.org/standard/1008-1987.html

9

http://www.python.org/dev/peps/pep-0008/#introduction
http://www.standards.ieee.org/standard/829-1998.html
http://www.standards.ieee.org/standard/1008-1987.html

